\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [210]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 248 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {(15 A+7 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

-1/2*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2)-1/4*(15*A+7*C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2
^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+1/10*(9*A+5*C)*sin(d*x+c)/a/d/cos(d*x+c)^(5/
2)/(a+a*cos(d*x+c))^(1/2)-1/10*(13*A+5*C)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+1/10*(49*A+25
*C)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {3121, 3063, 12, 2861, 211} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {(15 A+7 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

-1/2*((15*A + 7*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt
[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^(3/2)) + ((9*A + 5*C)*Sin
[c + d*x])/(10*a*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) - ((13*A + 5*C)*Sin[c + d*x])/(10*a*d*Cos[c +
d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + ((49*A + 25*C)*Sin[c + d*x])/(10*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[
c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\frac {1}{2} a (9 A+5 C)-a (3 A+C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {-\frac {3}{4} a^2 (13 A+5 C)+a^2 (9 A+5 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{5 a^3} \\ & = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {\frac {3}{8} a^3 (49 A+25 C)-\frac {3}{4} a^3 (13 A+5 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{15 a^4} \\ & = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {4 \int -\frac {15 a^4 (15 A+7 C)}{16 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{15 a^5} \\ & = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(15 A+7 C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a} \\ & = -\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {(15 A+7 C) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 d} \\ & = -\frac {(15 A+7 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {(9 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {(13 A+5 C) \sin (c+d x)}{10 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 7.78 (sec) , antiderivative size = 2455, normalized size of antiderivative = 9.90 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(8*C*Cos[c/2 + (d*x)/2]^3*Sin[c/2 + (d*x)/2])/(5*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(
5/2)) - ((A + C)*Cos[c/2 + (d*x)/2]^3*(1 - 2*Sin[c/2 + (d*x)/2]))/(10*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 + Sin[
c/2 + (d*x)/2])*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2)) + ((A + C)*Cos[c/2 + (d*x)/2]^3*(1 + 2*Sin[c/2 + (d*x)/2])
)/(10*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 - Sin[c/2 + (d*x)/2])*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2)) + (32*C*Cos[
c/2 + (d*x)/2]^3*Sin[c/2 + (d*x)/2])/(15*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) +
(64*C*Cos[c/2 + (d*x)/2]^3*Sin[c/2 + (d*x)/2])/(15*d*(a*(1 + Cos[c + d*x]))^(3/2)*Sqrt[1 - 2*Sin[c/2 + (d*x)/2
]^2]) + ((A + C)*Cos[c/2 + (d*x)/2]^3*(105*ArcTan[(1 - 2*Sin[c/2 + (d*x)/2])/Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]]
 - (4 + 3*Sin[c/2 + (d*x)/2])/((1 - Sin[c/2 + (d*x)/2])*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) + (19 + 29*Sin[c/2
 + (d*x)/2])/((1 - Sin[c/2 + (d*x)/2])*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]) + (67*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2
])/(1 - Sin[c/2 + (d*x)/2])))/(15*d*(a*(1 + Cos[c + d*x]))^(3/2)) - ((A + C)*Cos[c/2 + (d*x)/2]^3*(105*ArcTan[
(1 + 2*Sin[c/2 + (d*x)/2])/Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]] - (4 - 3*Sin[c/2 + (d*x)/2])/((1 + Sin[c/2 + (d*x
)/2])*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) + (19 - 29*Sin[c/2 + (d*x)/2])/((1 + Sin[c/2 + (d*x)/2])*Sqrt[1 - 2*
Sin[c/2 + (d*x)/2]^2]) + (67*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2])/(1 + Sin[c/2 + (d*x)/2])))/(15*d*(a*(1 + Cos[c
+ d*x]))^(3/2)) + ((-A + 7*C)*Cot[c/2 + (d*x)/2]^3*Csc[c/2 + (d*x)/2]^4*(4725*Sin[c/2 + (d*x)/2]^2 - 48825*Sin
[c/2 + (d*x)/2]^4 + 210105*Sin[c/2 + (d*x)/2]^6 - 486630*Sin[c/2 + (d*x)/2]^8 + 655812*Sin[c/2 + (d*x)/2]^10 -
 710*Hypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10
 - 40*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2, 2, 9/2}, {1, 1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2
+ (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10 - 518760*Sin[c/2 + (d*x)/2]^12 + 1770*Hypergeometric2F1[2, 9/2, 11/2, Sin
[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 + 226656*Sin[c/2 + (d*x)/2]^14 - 1500*H
ypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^14 - 420
48*Sin[c/2 + (d*x)/2]^16 + 440*Hypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]
^2)]*Sin[c/2 + (d*x)/2]^16 + 4725*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sqrt[Sin[c
/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 56700*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*
x)/2]^2)]]*Sin[c/2 + (d*x)/2]^2*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 291060*ArcTanh[Sqrt
[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^4*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*S
in[c/2 + (d*x)/2]^2)] - 833760*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*
x)/2]^6*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 1458000*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(
-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^8*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] -
 1598400*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^10*Sqrt[Sin[c/2
+ (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 1080000*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x
)/2]^2)]]*Sin[c/2 + (d*x)/2]^12*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 414720*ArcTanh[Sqrt
[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^14*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*
Sin[c/2 + (d*x)/2]^2)] + 69120*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*
x)/2]^16*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 60*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{2
, 2, 9/2}, {1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10*(-5 + 4*Sin[c/
2 + (d*x)/2]^2)))/(675*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2)*(-1 + 2*Sin[c/2 + (d*
x)/2]^2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(425\) vs. \(2(211)=422\).

Time = 11.24 (sec) , antiderivative size = 426, normalized size of antiderivative = 1.72

method result size
default \(\frac {\left (75 A \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+35 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, C \left (\cos ^{4}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+150 A \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+70 C \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+75 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+35 C \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+98 A \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+50 C \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+72 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+40 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-8 A \sin \left (d x +c \right ) \cos \left (d x +c \right )+8 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{20 a^{2} d \cos \left (d x +c \right )^{\frac {5}{2}} \left (1+\cos \left (d x +c \right )\right )^{2}}\) \(426\)
parts \(\frac {A \left (75 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+49 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+150 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+36 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+75 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-4 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+4 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{20 d \left (1+\cos \left (d x +c \right )\right )^{2} \cos \left (d x +c \right )^{\frac {5}{2}} a^{2}}+\frac {C \left (7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+5 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+14 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+4 \sqrt {2}\, \sin \left (d x +c \right )+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{4 d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\cos \left (d x +c \right )}\, a^{2}}\) \(442\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/20/a^2/d*(75*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)^4+35*2^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*C*cos(d*x+c)^4*arcsin(cot(d*x+c)-csc(d*x+c))+150*A*cos(d*x+c)^3*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+70*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+75*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*cos(d*x+c)^2*arcsin(
cot(d*x+c)-csc(d*x+c))+35*C*cos(d*x+c)^2*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c
))+98*A*cos(d*x+c)^3*sin(d*x+c)+50*C*cos(d*x+c)^3*sin(d*x+c)+72*A*sin(d*x+c)*cos(d*x+c)^2+40*C*cos(d*x+c)^2*si
n(d*x+c)-8*A*sin(d*x+c)*cos(d*x+c)+8*A*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(5/2)/(1+cos(d*x+c))^2

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.94 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {5 \, \sqrt {2} {\left ({\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{5} + 2 \, {\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, {\left ({\left (49 \, A + 25 \, C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (9 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} - 4 \, A \cos \left (d x + c\right ) + 4 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{20 \, {\left (a^{2} d \cos \left (d x + c\right )^{5} + 2 \, a^{2} d \cos \left (d x + c\right )^{4} + a^{2} d \cos \left (d x + c\right )^{3}\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/20*(5*sqrt(2)*((15*A + 7*C)*cos(d*x + c)^5 + 2*(15*A + 7*C)*cos(d*x + c)^4 + (15*A + 7*C)*cos(d*x + c)^3)*s
qrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 +
 a*cos(d*x + c))) - 2*((49*A + 25*C)*cos(d*x + c)^3 + 4*(9*A + 5*C)*cos(d*x + c)^2 - 4*A*cos(d*x + c) + 4*A)*s
qrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^5 + 2*a^2*d*cos(d*x + c)^4 + a^2*
d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + a*cos(c + d*x))^(3/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + a*cos(c + d*x))^(3/2)), x)